A practical application for Gray codes

Posted on October 16, 2009. Filed under: Uncategorized | Tags: , , , , , |

Suppose you have two devices both of which get their digital clock via a LEMO connector on the front panel. Device A sends signals to device B via a cable. Whether or not device B can read the signals sent by device A correctly depends on whether the signals have been stable for long enough at the time when the signals are read (typcially the rising edge of the digital clock). Varying the delays of the clock signal into either device should show a range of delays where the signals can be read correctly and a range where the communication does not work.

For obvious reasons one does not need to go beyond the duration of one clock cycle. In my case, the clock frequency was about 40 MHz (corresponding to a clock cycle length of 25ns). I decided that steps of 2ns would be sufficient for the test I had to do. I used set of cables ‘lengths’ corresponding to delays of powers of two: 2ns, 4ns, 8ns and 16ns.

Now cycle is as follows: insert the delay x into the clock cable for device A, run a test, replace the delay on the clock cable to device A by another combination of the test cables, rerun the test etc. How do you optimize the number of times one has to connect/disconnect cables ? Certainly, stepping from 2ns to 30ns (or to 26 ns) by increasing the delay by 2ns at each step is not optimal…

Gray codes provide a solution to this answer. For example, a 4 bit Gray code traverses all binary numbers from 0000 to 1111 but in a way where for each step only one bit changes. Applying this to the delay scanning problem, this means that cable delays are tested in the following order:

Gray code Corresponding set
of cables
total delay action for next step
0000 none 0ns add 2ns cable
0001 2ns 2ns add 4ns cable
0011 4ns + 2ns 6ns remove 2ns cable
0010 4ns 4ns add 8ns cable
0110 8ns + 4ns 12ns add 2ns cable
0111 8ns + 4ns + 2ns 14ns remove 4ns cable
0101 8ns + 2ns 10ns remove 2ns cable
0100 8ns 8ns add 16ns cable
1100 16ns + 8ns 24ns add 2ns cable
1101 16ns + 8ns + 2ns 26ns add 4ns cable
1111 16ns + 8ns + 4ns + 2ns 30ns remove 2ns cable
1110 16ns + 8ns + 4ns 28ns remove 8ns cable
1010 16ns + 4ns 20ns add 2ns cable
1011 16ns + 4ns + 2ns 22ns remove 4ns cable
1001 16ns + 2ns 18ns remove 2ns cable
1000 16ns 16ns remove 16ns cable

Make a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Liked it here?
Why not try sites on the blogroll...

%d bloggers like this: